Egyre több mesterségesintelligencia-alapú rendszer próbál rovarokat azonosítani, de nincs könnyű dolguk.
Az Oregoni Állami Egyetemen fejlesztett technológia például folyadékkal megtöltött csövön keresztül juttatja el a rovarokat a kameráig. Izraeli kutatók hím és nőstény szúnyogokat megkülönböztető rendszert dolgoztak ki. Dán és finn tudósok mesterséges ideghálókkal végzik az azonosító munkát. Készülékük szépséghibája, hogy a felhasználóknak manuálisan kell boldogulniuk a példányokkal.
A Világgazdasági Fórum szerint a biológiai sokszínűség elvesztése a globális civilizációra leselkedő egyik legnagyobb veszély. A rovarok kulcsfontosságúak, apró méretük és nagy számuk viszont, különösen a fajok szintjén, megnehezíti sorsuk nyomon követését. Populációik kiértékelésében rengeteget segíthetnek az automatizált megoldások.
A legújabb a német, olasz és szingapúri múzeumok, egyetemek és kutatóintézetek közös fejlesztése, egy rovarosztályozó.
A robotikus szerkezet az állatokat ki- és beszállító, pillanatfelvételeket készítő és a képeket feldolgozó rendszereket integrál össze. A modell outputját megjelenítő érintőképernyő a felhasználói interfész.
A kutatók az ImageNet képadatbázison gyakoroltattak, majd 4325 rovarképen és felnagyított változataikon finomhangoltak egy ideghálót.
A „rovarbot” következőképpen működik: a felhasználók a gép edényére helyeznek egy szét nem válogatott halott rovarokkal teli Petri-edényt. A modell a lefelé irányuló kamera képeivel dolgozik. Eldönti, hogy melyik néz ki rovarnak, majd az állatokat egy szívószál végű komponens emeli fel.
A mintákat Raspberry Pivel működtetett, háromtengelyű robot juttatja el egy lapra, ahol a második kamera részletes fényképeket készít róluk. A rendszer elfogadja az adott képet, és megállapítja, hogy milyen rovarról van szó.(A teszteken a kutatók az azonosításra használt képrészletekről hőtérképet is készítettek.)
A robot ezt követően egy másik tálcára helyezi a mintákat, ekkor történik a DNS-szekvenálás. A rendszer a DNS-adatokat hozzáadja a képet, az azonosítás és a mérések eredményeit tartalmazó fájlhoz.
A tesztek jól sikerültek, a rendszer 91,4 százalékos pontossággal dolgozott. Szép, de a humán szakértőknél rosszabb eredmény. Egyelőre legalábbis így van, viszont az árak csökkenésével és a technológia tökéletesedésével hamarosan ezen a területen is komoly igény lehet a mesterséges intelligenciára, robotokra.